Introduction

• GSK1278863A is a novel small molecule that has demonstrated in vitro and in vivo inhibition of the hypoxia-inducible factor (HIF) prolyl hydroxylases EGLN1/3. GSK1278863A increased erythropoietin (EPO) and Hb production following repeat oral administration to preclinical species; EPO increased following single dose oral administration to humans.

• Study PX111427 was a single-blind, randomized, placebo controlled (active-placebo ratio of 2:1), dose-rising, single oral dose (2 to 300 mg), sequential parallel group study to investigate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) in healthy adults (ClinicalTrials.gov, reference NCT00750256).

• PK: GSK1278863A PK were linear with dose proportionate increases in plasma exposure; \(t_{\text{max}} \) ranged between 1.25-2.00 h and 1.12-2.00 h from 0.8-4.0 mg/kg.

• PD: Significant increases in circulating plasma EPO were observed following single-dose administration of 15, 50, 150, and 300 mg of GSK1278863A (Figure 1).

Objectives

An exploratory research collaboration utilizing the Hematopoiesis PhysioLab® incorporating GSK1278863A’s mechanism of action was established and simulations were conducted to predict changes in Hb under various scenarios and compared to a standard recombinant erythropoietin (rEPO) regimen in healthy subjects and patients with kidney disease.

Methods

• Simulations were carried out in the Entelos Hematopoiesis PhysioLab platform which is a large-scale, ordinary differential equations (ODEs) based model that captures key aspects of the hematopoietic physiology.

• Public literature data 1-4 was used to model HIF regulated production of EPO. Single-dose PK/PD data was used to establish a two-compartment PK model of prolyl hydroxylase inhibition (PHI), and to represent GSK1278863A effect on HIF regulation of EPO production (Figures 2 and 3).

Results

• In virtual healthy subjects, 25 mg QD would achieve the desired increase in Hb, while doses >50 mg QD may result in Hb increasing >1g/dL over 2 wks especially in high responders (Figure 5).

• EPO production in response to a GD or BD dosing to virtual healthy subjects predicted Hb response approached steady-state after 14 days (Figure 6).

• As displayed in Figures 6 and 7, the simulation of clinical response of a wide array of virtual patient phenotypes for a range of doses and dosing schedules facilitated exploration of various study designs, and optimization of inclusion criteria (i.e., baseline severity, Hb, dose and dose titration, and safety criteria (i.e., \(Hb > 13g/dL \) or \(>1g/dL \) over 2 wks in a given patient phenotype; predicted duration of Hb return to baseline once dose suspended).

• Predicted average VEGF (C24) following GSK1178863A 25 mg QD was 19-54 pg/mL and dependent on drug responder type.

Conclusions

• Simulations revealed a heterogeneous GSK1278863A response and emphasized the importance of patient stratification and an adaptive approach for Phase 2 designs.

• Understanding the predicted response of a wide array of diverse CKD phenotypes to a range of GSK1278863A doses + dose durations can help optimize the inclusion criteria and dosing regimen.

• Further modeling with additional healthy subject and patient data could help refine the clinical trial design by employing a prevalence-weighted population of CKD patients and exploring dose titration strategies.

• Exploration of GSK1278863A’s effects in Stage 5 (dialysis) CKD patients may provide additional confidence in forecasting the potential response in this population.

References

